欢迎进入河南立杆教育科技有限公司网站!

您暂无未读询盘信息!
18513684111

河南立杆教育科技有限公司

考研资讯
当前位置 当前位置:首页 > 考研资讯 > 时事聚焦

新算法突破BCI瓶颈 中国团队夺世界机器人大赛双*

所属分类:时事聚焦    发布时间: 2020-12-18    作者:
  分享到:   
二维码分享
原标题:新算法突破BCI瓶颈 中国团队夺世界机器人大赛双*

日前,“2020世界机器人大赛-BCI脑控机器人大赛”公布成绩,天津大学和腾讯天衍实验室组成的C2Mind战队,经过多轮赛程的激烈比拼,实力入围BCI脑控机器人大赛“运动想象范式”赛题决赛,*终成功斩获技术赛“颞叶脑机组”一等奖,以及技术锦标赛“颞叶脑机有训练集一等奖”两项*。

BCI(Brain-computer interface,脑-机接口)是指通过对神经系统电活动和特征信号的收集、识别及转化,使人脑发出的指令能够直接传递给指定的机器终端,从而使人对机器人的控制和操作更为高效便捷,俗称“脑控”。该项技术是一项融合了神经科学和人工智能的一门新兴技术,在人与机器人的交流沟通领域有着重大创新意义和使用价值,其已广泛应用于助残康复、灾害救援、娱乐体验等多个领域。

作为集科技性、创新性、实用性于一体的*BCI赛事,本届大赛上也诞生了诸多脑-机接口领域突破性技术成果。由天津大学和腾讯天衍实验室组成的C2Mind战队,从运动想象(Motor imagery,MI)路径入手。这是一种非常重要的BCI范式,指没有任何肢体运动的情况下,利用意念想象肢体运动,是一种自发性脑电。但是,由于脑电信号的不稳定性,以及不同受试者脑电信号差异较大,甚至同一受试者在不同时间段采集的脑电信号都会存在较大差异,这使得脑机接口技术在使用前均需较长的校准时间,且系统性能不稳定,这些问题均严重影响了脑机接口技术运动想象范式在实际医疗场景中的应用。

研究运动想象算法的腾讯天衍实验室高级研究员柳露艳介绍,针对脑电信号数据差异大,且数据集样本量少,而导致训练困难及训练模型泛化性能差等问题,腾讯天衍实验室提出了一种创新的运动想象脑电信号分类方法。该方法首先通过将同类样本的时频图进行叠加的方式进行数据预处理,这样在保证扩充数据多样性的同时,又保持了原始数据时频特性,同时还增加了模型在不同受试者或者同一受试者不同时间点脑电信号上的泛化性能;其次使用了基于GAN的领域自适应算法进一步加强了模型在不同脑电信号上的泛化性能。使用该算法训练的轻量级卷积神经网络(Convolutional neural network,CNN)模型,具有更强的鲁棒性和泛化性能。

据悉,世界机器人大赛在业内被誉为机器人界的“奥林匹克”,是目前国内外影响广泛的机器人领域官方专业赛事,自2015年起已成功举办五届,共吸引了全球20余个国家12万余名选手参赛。BCI脑控机器人大赛作为世界机器人大赛中一项高精尖科研类赛事已成功举办三届,此项竞赛内容重点考察脑-机接口技术在医疗康复等领域的创新应用技术成果,旨在推动该技术与各领域产业交流合作,满足人们对医疗、养老、助残、康复等多样化的民生需求,实现该领域与各行业的跨越融合发展。

(责编:杨虞波罗、初梓瑞)

本文转载自人民网,内容均来自于互联网,不代表本站观点,内容版权归属原作者及站点所有,如有对您造成影响,请及时联系我们予以删除!

报名热线:

18513684111
地址:郑州市二七区京广南路与沅江路交叉口向西100米
邮箱:ligangaokao@163.com

友情链接: 开封感统训练 合肥婚纱摄影 兰州电商代运营 南京建筑资质代办

Copyright © 河南立杆教育科技有限公司  技术支持:  备案号:  网站地图  RSS   XML   城市分站:  河南  万家灯火